Nanotechnology-enabled Herbal Drug Delivery: A Paradigm Shift in Phytopharmaceuticals
P N Karishma, P Anitha, G Mariyababu, G V L Prasanna, Bhavani Boddeda
Abstract:
The resurgence of interest in herbal medicines, driven by their holistic efficacy and minimal side effects, has revitalized phytopharmaceutical research. However, traditional herbal formulations face significant challenges, including poor bioavailability, instability, and inconsistent therapeutic outcomes. Nanotechnology has emerged as a revolutionary tool in overcoming these limitations by enabling targeted, sustained, and enhanced delivery of bioactive plant constituents. This review delves into the current advancements in nanotechnology-enabled herbal drug delivery systems, including nanoparticles, liposomes, phytosomes, nanoemulsions, and nanogels, highlighting their potential to transform phytopharmaceuticals into more effective, patient-compliant therapeutics. We explore the mechanisms through which nanocarriers improve solubility, protect phytoconstituents from degradation, and ensure controlled release at the desired site of action. The review also addresses safety considerations, regulatory perspectives, and the future scope of integrating artificial intelligence and precision medicine in nano-phytopharmaceutical development. Overall, nanotechnology represents a paradigm shift in the delivery and therapeutic performance of herbal drugs, paving the way for the next generation of evidence-based, technology-driven natural medicines.
Keywords: Nanotechnology, Phytopharmaceuticals, Herbal Drug Delivery, Nanocarriers, Bioavailability, Targeted Delivery.
References:
[1] Ekor, M. (2014). The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Frontiers in Pharmacology, 4, 177. https://doi.org/10.3389/fphar.2013.00177
[2] WHO. (2013). Traditional Medicine Strategy 2014–2023. World Health Organization.
[3] Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2014;4:177.
[4] Patwardhan B, Warude D, Pushpangadan P, Bhatt N. Ayurveda and traditional Chinese medicine: a comparative overview. Evid Based Complement Alternat Med. 2005;2(4):465–473.
[5] Tilburt JC, Kaptchuk TJ. Herbal medicine research and global health: an ethical analysis. Bull World Health Organ. 2008;86(8):594–599.
[6] Patra, J. K., Das, G., Fraceto, L. F., et al. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 16, 71. https://doi.org/10.1186/s12951-018-0392-8
[7] Ansari, S. H., Islam, F., Sameem, M. (2012). Influence of nanotechnology on herbal drugs: A Review. Journal of Advanced Pharmaceutical Technology & Research, 3(3), 142–146. https://doi.org/10.4103/2231-4040.104709.
[8] Gupta, R. C., Srivastava, A., Lall, R., et al. (2019). Integration of herbal medicine into evidence-based clinical practice: Current status and future perspectives. Herbal Medicine: Biomolecular and Clinical Aspects (2nd ed.).
[9] Suresh PK, et al. Nanotechnology in herbal medicine: a review. Int J Green Pharm. 2019;13(1):1–9.
[10] Singh BN, et al. Challenges and opportunities in the delivery of herbal medicines. Curr Drug Deliv. 2006;3(3):271–279.
[11] Paliwal R, et al. Stability enhancement in natural drugs. J Pharm Bioall Sci. 2019;11(4):275–284.
[12] Rai, M., Pandit, R., Gaikwad, S., et al. (2017). Nanotechnology-based promising strategies for the delivery of herbal compounds. Journal of Controlled Release, 245, 109–124. https://doi.org/10.1016/j.jconrel.2016.11.018
[13] Yallapu, M. M., Nagesh, P. K. B., Jaggi, M., Chauhan, S. C. (2015). Therapeutic applications of curcuminnanoformulations. AAPS Journal, 17(6), 1341–1356. https://doi.org/10.1208/s12248-015-9781-4
[14] Dureja, H., Kaushik, D., Kumar, V. (2011). Developments in nanophytopharmaceuticals: a review. International Journal of Pharmaceutical Sciences and Research, 2(6), 1375–1382.
[15] Kesarwani K, Gupta R, Mukerjee A. Bioavailability enhancers of herbal origin: an overview. Asian Pac J Trop Biomed. 2013;3(4):253–266.
[16] Lv Y, Li W, Liao W, Jiang H, Liu Y, Cao J, Lu W, Feng Y, “Nano-Drug Delivery Systems Based on Natural Products”, International Journal of Nanomedicine, 2024; 19:541-569,
[17] https://doi.org/10.2147/IJN.S443692 PMid:38260243
[18] Mukherjee PK, et al. Nano-encapsulation of botanicals: a promising tool for functional food development. Trends Food Sci Technol. 2018;80:130–146.
[19] Shah B, et al. Nanocarriers for phytoconstituents: a review. Curr Drug Ther. 2021;16(2):114–129.
[20] Dandekar P, et al. Nanoemulsions: applications in drug delivery. J NanosciNanotechnol. 2012;12(1):25–39.
[21] Jain S, et al. Nanotechnology in herbal medicine: clinical perspectives. Nanomedicine. 2020;15(3):217–228.
[22] Ahmed, F., Anwar, A., et al. (2020). Role of nanophytomedicine in current drug delivery: A critical review. Current Drug Delivery, 17(7), 548–560.
[23] Ministry of AYUSH, Government of India. (2019). Guidelines for safety and efficacy assessment of Ayurveda, Siddha and Unani drugs.
[24] Alshahrani, S. M., Alshehri, S., et al. (2023). Artificial intelligence in pharmaceutical product design: A contemporary review. Pharmaceuticals, 16(5), 644. https://doi.org/10.3390/ph16050644
[25] Sharma G, et al. Herbal nanomedicine: recent updates and future prospects. Adv Pharm Bull. 2018;8(4):495–508.
[26] WHO Traditional Medicine Strategy 2014–2023.
[27] Varghese N, et al. Artificial intelligence in pharmaceutical formulation: a new frontier. Expert Opin Drug Deliv. 2022;19(2):121–133.
[28] Yallapu, M. M., Nagesh, P. K. B., Jaggi, M., &Chauhan, S. C. (2015). Therapeutic applications of curcuminnanoformulations. AAPS Journal, 17(6), 1341–1356. https://doi.org/10.1208/s12248-015-9781-4
[29] Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., del Pilar Rodriguez-Torres, M., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S., & Shin, H. S. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 16, 71. https://doi.org/10.1186/s12951-018-0392-8
[30] Rai, M., Pandit, R., Gaikwad, S., Yadav, A., &Gade, A. (2017). Nanotechnology-based promising strategies for the delivery of herbal compounds. Journal of Controlled Release, 245, 109–124. https://doi.org/10.1016/j.jconrel.2016.11.018
[31] Ansari, S. H., Islam, F., &Sameem, M. (2012). Influence of nanotechnology on herbal drugs: A Review. Journal of Advanced Pharmaceutical Technology & Research, 3(3), 142–146. https://doi.org/10.4103/2231-4040.104709
[32] Ahmed, F., Anwar, A., Qamar, W., AbulKalam, M., &Akhtar, J. (2020). Role of nanophytomedicine in current drug delivery: A critical review. Current Drug Delivery, 17(7), 548–560. https://doi.org/10.2174/1567201817666200610145617.
[33] H.E. Thu, M. Haider, S. Khan, M. Sohail, Z. Hussain, Nanotoxicity Induced by Nanomaterials: A Review of Factors Affecting Nanotoxicity and Possible Adaptations, OpenNano, 2023.
[34] T. Xia, et al., Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm, Nano Lett. 6 (8) (2006) 1794–1807.
[35] T. Sriram, T. Chakraborty, P.M. Prasanna, Artificial intelligence powered insights into nanotoxicology, Int. J. Adv. Life Sci. Res. 7 (2) (2024) 68–80.
[36] P.K. Shende, Y.A. Kulkarni, R.S. Gaud, K.C. Deshmukh, R. Cavalli, F. Trotta, F. Caldera, Acute and repeated dose toxicity studies of different β-cyclodextrin based nanosponge formulations, J. Pharmaceut. Sci. 104 (5) (2015) 1856–1863.
[37] U. Lestari, M. Muhaimin, A.Y. Chaerunisaa, W. Sujarwo, Improved solubility and activity of natural product in nanohydrogel, Pharmaceuticals 16 (2023).
[38] B. Balram, N. Kaur, K. Kamal, G. Singh, D. Aggarwal, Nanotechnology in herbal drug delivery systems: enhancing therapeutic efficacy and patient compliance, Res. J. Pharm. Technol. 17 (2) (2024) 934–938.
[39] P. Patel, K.K. Garala, S. Singh, B.G. Prajapati, C. Chittasupho, Lipid-based nanoparticles in delivering bioactive compounds for improving therapeutic efficacy, Pharmaceuticals 17 (2024).
uri, M. Hajialyani, Z. Izadi, R. Bahramsoltani, M.H. Farzaei, M. Abdollahi, Nanophytomedicines for the prevention of metabolic syndrome: a pharmacological and biopharmaceutical review, Front. Bioeng. Biotechnol. 8 (2020).
[41] B. Mukherjee, L. Dutta, L. Mondal, N.S. Dey, S. Chakraborty, R. Maji, T.K. Shaw, Nanoscale formulations and diagnostics with their recent trends: a major focus of future nanotechnology, Curr. Pharmaceut. Des. 21 (36) (2015) 5172–5186.
[42] D. Lombardo, M. Kiselev, M.T. Caccamo, Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine, J. Nanomater 1 (2019) 3702518.
[43] J. Di, X. Gao, Y. Du, H. Zhang, J. Gao, A. Zheng, Size, shape, charge and “stealthy” surface: carrier properties affect the drug circulation time in vivo, Asian J. Pharm. Sci. 16 (2020) 444–458.
[44] S. Seino, et al., Gamma-ray synthesis of magnetic nanocarrier composed of gold and magnetic iron oxide, J. Magn. Magn Mater. 293 (2005) 144–150.
[45] P. Khulbe, D.M. Singh, A. Aman, E.D. Ahire, R.K. Keservani, The Emergence of Nanocarriers in the Management of Diseases and Disorders, Community Acquired Infection, 2023.
[46] A. Fergusson, R. Zhang, J.S. Riffle, R.M. Davis, Encapsulation of PI3K inhibitor LY294002 within polymer nanoparticles using ion pairing flash nanoprecipitation, Pharmaceutics 15 (2023)
[47] G. Yang, et al., Phase separation-induced nanoprecipitation for making polymer nanoparticles with high drug loading, Aggregate 4 (2023).
[48] S. Tayal, P. Tiwari, V. Sahu, S. Sharma, Role of liposome as novel carrier molecule, Int. J. Pharma Prof. Res. (IJPPR) 14 (3) (2023) 141–150.
[49] R.J. Sarode, H.S. Mahajan, Dendrimers for drug delivery: an overview of its classes, synthesis, and applications, J. Drug Deliv. Sci. Technol. (2024) 105896.
[50] H. Ma, Quantum dots and their potential biomedical applications, Appl. Comput. Eng. (2024) 353–363.
[51] R. Anjum, P.K. Lakshmi, G.Pulla.A Review on Solid Lipid Nanoparticles; Focus on Excipients And Formulation Techniques, 2019.
[52] M.A. Lavate, S.T. Karpe, S.N. Biradar, M.R. Bhandare, Solid lipid nanoparticles; as a promising drug delivery method to get greater bioavailability: a review, World J. Biol. Pharma. Health Sci. 14 (2) (2023) 072–080.
[53] K.C.D. Castro, J.M. Costa, M.G.N. Campos, Drug-loaded polymeric nanoparticles: a review, International Journal of Polymeric Materials and Polymeric Biomaterials 71 (1) (2022) 1–13.
[54] S. Tayal, P. Tiwari, U. Pratap Singh, S. Dubey, R. Vishwakarma, A review on formulation, characterization and applications of nanoemulsion, Asian J. Appl. Sci.Technol. 8 (1) (2024) 67–84.
[55] A. Sharma, et al., Current paradigms in employing self-assembled structures: drug delivery implications with improved therapeutic potential, Colloids Surf. B Biointerfaces 234 (2024) 113745.
[56] M.A. AhmadiBonakdar, D. Rodrigue, Electrospinning: Processes, Structures, and Materials, Macromol, 2024.
[57] N.H. Thang, T.B. Chien, D.X. Cuong, Polymer-based hydrogels applied in drug delivery: an overview, Gels 9 (2023).
[58] Adepu, S.; Ramakrishna, S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 2021, 26, 5905. [CrossRef] [PubMed]
[59] Sultana, A.; Zare, M.; Thomas, V.; Kumar, T.S.S.; Ramakrishna, S. Nano-Based Drug Delivery Systems: Conventional Drug Delivery Routes, Recent Developments and Future Prospects. Med. Drug Discov. 2022, 15, 100134.
[60] F. Babick, Dynamic light scattering (DLS). Characterization of Nanoparticles, 2020.
[61] E.A. Savchenko, E. Velichko, New techniques for measuring zeta-potential of colloidal system, in: Saratov Fall Meeting, 2019.
[62] S.B. Santoso, High-performance liquid chromatography for analytical chemistry, Innovat. Health Soc. 1 (2) (2021) 33–34.
[63] I.A. Aljuffali, C.-l. Fang, C.-H. Chen, J.-Y. Fang, Nanomedicine as a strategy for natural compound delivery to prevent and treat cancers, Curr. Pharmaceut. Des. 22 (27) (2016) 4219–4231.
[64] S. Khogta, J. Patel, K. Barve, V.Y. Londhe, Herbal nano-formulations for topical delivery, J. Herb. Med. 20 (2020) 100300.
[65] S. Pulipaka, M.R. Kumar, P. Sriram, A. Suttee, A Review on Nano Drug Delivery Systems of Herbal Medicine, 2021.
[66] V.K. Singh, D. Arora, M.I. Ansari, P.K. Sharma, Phytochemicals based chemopreventive and chemotherapeutic strategies and modern technologies to overcome limitations for better clinical applications, Phytother Res. 33 (2019) 3064–3089.
[67] M. Pourmadadi, M. Ahmadi, M. Abdouss, F. Yazdian, H. Rashedi, M. NavaeiNigjeh, Y. Hesari, The synthesis and characterization of double nanoemulsion for targeted Co-Delivery of 5-fluorouracil and curcumin using pH-sensitive agarose/ chitosan nanocarrier, J. Drug Deliv. Sci. Technol. 70 (2022) 102849.
[68] M. Mansourian, et al., Cytotoxic effect of podophyllotoxin-loaded magnetic nanoparticles on proliferation of colorectal (HT-29) and breast (MCF-7) cancer cell lines, Current Nanomater. 8 (1) (2023) 82–89.
[69] M. Moudi, R. Go, C. Yien, Nazremohd, Vinca Alkaloids Int J Prev Med 4 (11) (2013) 1231–1235.
[70] M.A. Malik, A.A. Hashmi, A.S. Al-Bogami, M.Y. Wani, Harnessing the power of gold: advancements in anticancer gold complexes and functionalized nanoparticles, J. Mater. Chem. B 12 (2024) 552–576.
[71] F.M.R. Su´ arez, G. Morell, B. Weiner, N. Medina, W. Pantoja, Gold nanoparticles with graphene quantum dots as drug delivery platforms for anticancer applications, Cancer Res. 84 (6_Supplement) (2024), 5758-5758.
[72] T.H. Au, B.N. Nguyen, P.H. Nguyen, S. Pethe, G. Vo-Thanh, T.H. Vu Thi, Vinblastine loaded on graphene quantum dots and its anticancer applications, J. Microencapsul. 39 (3) (2022) 239–251.
[73] X. Wang, S. Mao, Application of phytodrug delivery in anticancer therapy, in: Novel Drug Delivery Systems for Phytoconstituents, CRC Press, 2019, pp. 157–191.
[74] S. Hatem, D. Mohammed, N. Ezzat, Nanotechnology-based strategies overcoming the challenges of retinoblastoma: a comprehensive overview and future perspectives, Future J. Pharmaceut. Sci. 10 (1) (2024) 14.
[75] M. Adel, et al., Chemotherapeutic effects of Apigenin in breast cancer: preclinical evidence and molecular mechanisms; enhanced bioavailability by nanoparticles, Biotechnol. Rep. 34 (2022) e00730.
[76] R. Sen, S. Ganguly, S. Ganguly, M.C. Debnath, S. Chakraborty, B. Mukherjee, D. Chattopadhyay.Apigenin-loaded PLGA-DMSA nanoparticles: a novel strategy to treat melanoma lung metastasis, Mol. Pharm. 18 (5) (2021) 1920–1938.
[77] CDSCO. (2019). Guidance for Industry: Preparation of Regulatory Dossier for Nanopharmaceuticals. Government of India, Ministry of Health and Family Welfare.
[78] U.S. FDA. (2014). Considering Whether an FDA-Regulated Product Involves the Application of Nanotechnology. https://www.fda.gov
[79] EMA. (2019). Reflection paper on nanotechnology-based medicinal products for human use. European Medicines Agency.
[80] Hussain, N., & Al-Salami, H. (2021). Toxicity and safety of nanoformulated herbal medicines. Nanotoxicology, 15(5), 543–560. https://doi.org/10.1080/17435390.2021.1881154.
[81] Pandey, R., & Mishra, A. (2020). Standardization of herbal nanoformulations: Challenges and prospects. Phytomedicine, 76, 153244. https://doi.org/10.1016/j.phymed.2020.15324.