Microemulsions as Novel Drug Carriers: A Comprehensive Review
Mhatre Mayuri, Yadav Gangotri, Omkar Tambvekar, Jain Ashish
Abstract:
The aim of this study is to evaluate the antioxidant and anti-inflammatory activities of aqueous (AqE) and ethanolic (EE) extracts of sinapis alba L.. The antioxidant activity was carried out by free radical scavenging method (DPPH) and bleaching of β-carotene, the anti-inflammatory was evaluated in vitro according to the test of inhibition protein (ovalbumin) denaturation and in vivo by the ear edema test induced by xylene (topical application). According to obtained results, total polyphenols content in ethanolic extract was 133.625±4.309μgGAE/mgE, while in aqueous extract was 87.533±7.416μg GAE/mgE. Ethanolic extract was found to be richer in flavonoids (22.199±0.763μgQE/mgE) in comparison with aqueous extract (14.068±1.308μgQE/mgE). In the DPPH assay, ethanolic extract showed the higher scavenging capacity (IC50 = 0.097±0.013mg/ml) followed by aqueous extract with IC50 of 0.162±0.01mg/ml. Whereas, ethanolic extract showed the best inhibitory capacity of the coupled oxidation of linoleic acid/ β-carotene (71.024±12.9%). The anti-inflammatory activity in vitro was 66% and 72% in aqueous and ethanolic extracts respectively compared to diclofenac 62%, the antiinflammatory activity in vivo showed that after 2 hours of the treatment by aqueous extract produced a significant inhibition 87%.
Keywords: Sinapis alba L., Polyphenols, Antioxidant Activity, Anti-inflammatory Activity
References:
[1] Schulman, J. H.; Stoeckenius, W.; Prince, L. M. Mechanism of Formation and Structure of Micro Emulsions by Electron Microscopy. The Journal of Physical Chemistry 1959, 63 (10), 1677–1680. https://doi.org/10.1021/j150580a027.
[2] Hoar, T. P.; Schulman, J. H. Transparent Water-In-Oil Dispersions: The Oleopathic Hydro- Micelle. Nature 1943, 152 (3847), 102–103. https://doi.org/10.1038/152102a0.
[3] Nirmala Grampurohit; Ravikumar, P.; Mallya, R. Microemulsions for Topical Use– a Review. 2011, 45 (1).
[4] Ceglie, A.; Das, K.; Lindman, B. Effect of Oil on the Microscopic Structure in FourComponent Cosurfactant Microemulsions. 1987, 115 (1), 115–120. https://doi.org/10.1016/0021- 9797(87)90015-4.
[5] Lawrence, M. J.; Rees, G. D. Microemulsion-Based Media as Novel Drug Delivery Systems. Advanced Drug Delivery Reviews 2012, 64, 175–193. https://doi.org/10.1016/j.addr.2012.09. 018.
[6] Derle, D.; Sagar, B.; Pimpale, S. Microemulsion as a Vehicle for Transdermal Permeation of Nimesulide. Indian Journal of Pharmaceutical Sciences 2006, 68 (5), 622. https://doi.org/10.4103/0250- 474x.29630.
[7] M. Begoña Delgado-Charro; Iglesias-Vilas, G.; José Blanco-Méndez; López-Quintela, M. A.; Marty, J.- P.; Guy, R. H. Delivery of a Hydrophilic Solute through the Skin from Novel Microemulsion Systems. 1997, 43 (1), 37–42.
[8] Kreilgaard, M. Influence of Microemulsions on Cutaneous Drug Delivery. Advanced Drug Delivery Reviews 2002, 54, S77–S98. https://doi.org/10.1016/s0169- 409x(02)00116-3
[9] Kreuter, J. Colloidal Drug Delivery Systems. 2014. https://doi.org/10.1201/978149871056 5
[10] Kawakami, K.; Yoshikawa, T.; Moroto, Y.; Kanaoka, E.; Takahashi, K.; Nishihara, Y.; Masuda, K. Microemulsion Formulation for Enhanced Absorption of Poorly Soluble Drugs. Journal of Controlled Release 2002, 81 (1-2), 65–74. https://doi.org/10.1016/s0168- 3659(02)00049-4.
[11] Allen, L. Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems; Lippincott Williams & Wilkins, 2014.
[12] Jain, N. K. Controlled and Novel Drug Delivery; Cbs: New Delhi, 2010.
[13] Osbome, D.; Amann, A. Topical Drug Delivery Formulations; 1989. https://doi.org/10.1201/b14194
[14] Kawakami, K.; Yoshikawa, T.; Hayashi, T.; Nishihara, Y.; Masuda, K. Microemulsion Formulation for Enhanced Absorption of Poorly Soluble Drugs. Journal of Controlled Release 2002, 81 (1-2), 75–82. https://doi.org/10.1016/s0168- 3659(02)00050-0.
[15] Yong Jin Kim; Ghanem, A.-H.; Mahmoud, H. I.; Higuchi, W. I. Short Chain Alkanols as Transport Enhancers for Lipophilic and Polar/Ionic Permeants in Hairless Mouse Skin: Mechanism(S) of Action. 1992, 80 (1-3), 17–31. https://doi.org/10.1016/0378- 5173(92)90258-4.
[16] Krauel, K.; Davies, N. M.; Hook, S.; Rades, T. Using Different Structure Types of Microemulsions for the Preparation of Poly(Alkylcyanoacrylate) Nanoparticles by Interfacial Polymerization. Journal of Controlled Release 2005, 106 (1-2), 76– 87. https://doi.org/10.1016/j.jconrel.2005.0 4.013.
[17] Jha S.K; Dey, S.; Karki, R. MicroemulsionsPotential Carrier for Improved Drug Delivery. Asian Journal of Biomedical and Pharmaceutical Sciences 2011, 1 (1), 0. https://doi.org/10.15272/ajbps.v1i1.2
[18] Ninham, B. W.; Chen, S. J.; D. Gareth Evans. Role of Oils and Other Factors in Microemulsion Design. The Journal of Physical Chemistry 1984, 88 (24), 5855–5857. https://doi.org/10.1021/j150668a023.
[19] Mohd. Yasir; Som, I.; Bhatia, K. Status of Surfactants as Penetration Enhancers in Transdermal Drug Delivery. Journal of Pharmacy and Bioallied Sciences 2012, 4 (1), 2. https://doi.org/10.4103/0975- 7406.92724
[20] Hellweg, T. Phase Structures of Microemulsions. Current opinion in colloid and interface science2002, 7 (1- 2), 50–56. https://doi.org/10.1016/s1359- 0294(02)00004-3.
[21] Lam, A. C.; Schechter, R. S. The Theory of Diffusion in Microemulsion. Journal of Colloid and Interface Science 1987, 120 (1), 56–63. https://doi.org/10.1016/0021- 9797(87)90322-5.
[22] Callender, S. P.; Mathews, J. A.; Kobernyk, K.; Wettig, S. D. Microemulsion Utility in Pharmaceuticals: Implications for MultiDrug Delivery. International Journal of Pharmaceutics 2017, 526 (1-2), 425–442. https://doi.org/10.1016/j.ijpharm.2017. 05.005.
[23] Kale, S. N.; Deore, S. L. Emulsion Micro Emulsion and Nano Emulsion: A Review. Systematic Reviews in Pharmacy 2016, 8 (1), 39–47. https://doi.org/10.5530/srp.2017.1.8.
[24] A. Haβe; Keipert S. Development and Characterization of Microemulsions for Ocular Application. European Journal of Pharmaceutics and Biopharmaceutics 1997, 43 (2), 179–183. https://doi.org/10.1016/s0939- 6411(96)00036-7
[25] Jha S.K; Dey, S.; Karki, R. MicroemulsionsPotential Carrier for Improved Drug Delivery. Asian Journal of Biomedical and Pharmaceutical Sciences 2011, 1 (1), 0. https://doi.org/10.15272/ajbps.v1i1.2.
[26] Ghosh, P.; Murthy, R. Microemulsions: A Potential Drug Delivery System. Current Drug Delivery 2006, 3 (2), 167–180. https://doi.org/10.2174/156720106776 359168.
[27] Singh, V.; Bushettii S.S; Appala Raju S; Ahmad, R.; Singh, M.; Anupam Bisht. Microemulsions as Promising Delivery Systems: A Review. Journal of Pharmaceutical Research 2011, 45 (4).
[28] Rao, Y.; Deepthi, K.; Chowdary, K. P. Microemulsions: A Novel Drug Carrier System. International Journal of Drug Delivery Technology 2009, 1 (2). https://doi.org/10.25258/ijddt.v1i2.883 8.
[29] Kumar, K.; Senthil. Microemulsion as Carrier for Novel Drug Delivery: A Review. International Journal of pharmaceutical sciences review and Research 2011, 10, 37–45.
[30] Ghosh, P.; Murthy, R. Microemulsions: A Potential Drug Delivery System. Current Drug Delivery 2006, 3 (2), 167–180. https://doi.org/10.2174/156720106776 359168.
[31] Shinoda, K.; Hironobu Kunieda. Conditions to Produce So-Called Microemulsions: Factors to Increase the Mutual Solubility of Oil and Water by Solubilizer. 1973, 42 (2), 381–387. https://doi.org/10.1016/0021- 9797(73)90303-2.
[32] Lawrence, M. J.; Rees, G. D. Microemulsion-Based Media as Novel Drug Delivery Systems. Advanced Drug Delivery Reviews 2012, 64, 175–193. https://doi.org/10.1016/j.addr.2012.09. 018.
[33] Patel, V. B.; Hirenkumar Kukadiya; R.C. Mashru; Surti, N.; Mandal, S. Development of Microemulsion for Solubility Enhancement of Clopidogrel. Iranian Journal of Pharmaceutical Research 2010, 9 (4),327- 334.
[34] Patel, V. B.; Hirenkumar Kukadiya; R.C. Mashru; Surti, N.; Mandal, S. Development of Microemulsion for Solubility Enhancement of Clopidogrel. Iranian Journal of PharmaceuticalResearch 2010. 327-334.
[35] Jha S.K; Dey, S.; Karki, R. MicroemulsionsPotential Carrier for Improved Drug Delivery. Asian Journal of Biomedical and Pharmaceutical Sciences 2011, 1 (1), 0. https://doi.org/10.15272/ajbps.v1i1.2.
[36] Graf, A.; Ablinger, E.; Peters, S.; Zimmer, A.; Hook, S.; Rades, T. Microemulsions Containing Lecithin and Sugar-Based Surfactants: Nanoparticle Templates for Delivery of Proteins and Peptides. International Journal of Pharmaceutics 2008, 350 (1-2), 351–360. https://doi.org/10.1016/j.ijpharm.2007. 08.053.
[37] Ghosh, P.; Murthy, R. Microemulsions: A Potential Drug Delivery System. Current Drug Delivery 2006, 3 (2), 167–180. https://doi.org/10.2174/156720106776 359168.
[38] Pandey, A.; Mittal, A.; Chauhan, N.; Alam, S. Role of Surfactants as Penetration Enhancer in Transdermal Drug Delivery System. Journal of Molecular Pharmaceutics & Organic Process Research 2014, 2 (2), 1–10. https://doi.org/10.4172/2329- 9053.1000113.
[39] Ninham, B. W.; Chen, S. J.; D. Gareth Evans. Role of Oils and Other Factors in Microemulsion Design. The Journal of Physical Chemistry 1984, 88 (24), 5855–5857. https://doi.org/10.1021/j150668a023.
[40] Mohd. Yasir; Som, I.; Bhatia, K. Status of Surfactants as Penetration Enhancers in Transdermal Drug Delivery. Journal of Pharmacy and Bioallied Sciences 2012, 4 (1), 2. https://doi.org/10.4103/0975- 7406.92724.
[41] Nirmala Grampurohit; Ravikumar, P.; Mallya, R. Microemulsions for Topical Use– a Review. Indian Journal of Pharmaceutical Education and Research 2011, 45 (1).
[42] Narang, A.; Delmarre, D.; Gao, D. Stable Drug Encapsulation in Micelles and Microemulsions. International Journal of Pharmaceutics 2007, 345 (1-2), 9–25. https://doi.org/10.1016/j.ijpharm.2007. 08.057.
[43] Tenjarla, S. Microemulsions: An Overview and Pharmaceutical Applications. Critical Reviews in Therapeutic Drug Carrier Systems 1999, 16 (5), 62. https://doi.org/10.1615/critrevtherdrug carriersyst.v16.i5.20
[44] Roux, D.; Coulon, C. Modelling Interactions in Microemulsion Phases. 1986, 47 (7), 1257–1264. https://doi.org/10.1051/jphys:0198600 47070125700
[45] Ramesh Shah, R.; Shripal Magdum, C.; Shivagonda Patil, S.; Shanawaj Niakwade, N. Preparation and Evaluation of Aceclofenac Topical Microemulsion. Iranian Journal of pharmaceutical research: IJPR 2010, 9 (1), 5–11.
[46] Mandal, S. K. Microemulsion Drug Delivery System: Design and Development for Oral Bioavailability Enhancement of Lovastatin: Original Research. 2011, 78 (3), 44–50.
[47] Solubility studies -Acharya, S. P.; Pundarikakshudu, K.; Panchal, A.; Lalwani, A. Preparation and Evaluation of Transnasal Microemulsion of Carbamazepine. Asian Journal of Pharmaceutical Sciences 2013, 8 (1), 64– 70. https://doi.org/10.1016/j.ajps.2013.07.0 08.
[48] Moghimipour, E.; Salimi, A.; Karami, M.; Isazadeh, S. Preparation and Characterization of Dexamethasone Microemulsion Based on Pseudoternary Phase Diagram. Jundishapur Journal of Natural Pharmaceutical Products 2013, 8 (3), 105–112. https://doi.org/10.17795/jjnpp-9373.
[49] Winsor, P. A. Hydrotropy, Solubilisation, and Related Emulsification Processes. Transactions of the Faraday Society 1948, 44, 376. https://doi.org/10.1039/tf9484400376
[50] Sunil Dhoot, A.; Naha, A.; JuhiPriya J, J.; NehaXalxo N, N. Phase Diagrams for Three-Component Mixtures in Pharmaceuticals and Its Applications. Journal of Young Pharmacists 2018, 10 (2), 132–137. https://doi.org/10.5530/jyp.2018.10.31
[51] Acharya, S. P.; Pundarikakshudu, K.; Panchal, A.; Lalwani, A. Preparation and Evaluation of Transnasal Microemulsion of Carbamazepine. Asian Journal of Pharmaceutical Sciences 2013, 8 (1), 64– 70. https://doi.org/10.1016/j.ajps.2013.07.0 08.
[52] Talegaonkar, S.; Azeem, A.; Ahmad, F.; Khar, R.; Pathan, S.; Khan, Z. Microemulsions: A Novel Approach to Enhanced Drug Delivery. Recent Patents on Drug Delivery & Formulation 2008, 2 (3), 238– 257. https://doi.org/10.2174/187221108786 241679.
[53] Santos, P.; Watkinson, A. C.; Hadgraft, J.; Lane, M. E. Application of Microemulsions in Dermal and Transdermal Drug Delivery. Skin Pharmacology and Physiology 2008, 21 (5), 246–259. https://doi.org/10.1159/000140228.
[54] Attwood, D.; Mallon, C. T.; C. Barr Taylor. Phase Studies on Oil-In-Water Phospholipid Microemulsions. International Journal of Pharmaceutics 1992, 84 (2), R5–R8. https://doi.org/10.1016/0378 5173(92)90063-8.
[55] Talegaonkar, S.; Azeem, A.; Ahmad, F.; Khar, R.; Pathan, S.; Khan, Z. Microemulsions: A Novel Approach to Enhanced Drug Delivery. Recent Patents on Drug Delivery & Formulation 2008, 2 (3), 238– 257. https://doi.org/10.2174/187221108786 241679
[56] Muzafar, F.; Singh, U. K.; Chauhan, L. Review on Microemulsion as Futuristic Drug Delivery. International Journal of Pharmacy and Pharmaceutical Sciences 2013, 5 (3), 39–53.
[57] Chaudhary, A.; Gaur, P. K.; Barman, M.; Mishra, R.; Singh, M. A Review On Microemulsion A Promising Optimising Technique Used As A Novel Drug Delivery System. International Research Journal Of Pharmacy 2018, 9 (7), 47–52. https://doi.org/10.7897/2230- 8407.097124
[58] Rao, Y.; Deepthi, K.; Chowdary, K. P. Microemulsions: A novel drug carrier system. International JournalofDrugDeliveryTechnology 2009, 1 (2). https://doi.org/10.25258/ijddt.v1i2.883 8.
[59] Peltola, S.; Saarinen-Savolainen, P.; Juha Kiesvaara; T.M Suhonen; Arto Urtti. Microemulsions for Topical Delivery of Estradiol. 2003, 254 (2), 99–107. https://doi.org/10.1016/s0378- 5173(02)00632-4.
[60] Patel, A. R.; Vavia, P. R. Preparation and in Vivo Evaluation of SMEDDS (SelfMicroemulsifying Drug Delivery System) Containing Fenofibrate. The AAPS Journal 2007, 9 (3), E344–E352. https://doi.org/10.1208/aapsj0903041.
[61] Thakker, K. D.; Chern, W. H. Development and Validation of in Vitro Release Tests for Semisolid Dosage Forms—Case Study. Dissolution Technologies 2003, 10 (2), 10–15. https://doi.org/10.14227/dt100203p10.
[62] Podlogar, F.; Mirjana Gašperlin; Matija Tomšič; Jamnik, A.; M. Bešter Rogač. Structural Characterisation of Water– Tween 40®/Imwitor 308®–Isopropyl Myristate Microemulsions Using Different Experimental Methods. 2004, 276 (1-2), 115–128. https://doi.org/10.1016/j.ijpharm.2004. 02.018.
[63] R Sripriya; K. Muthu Raja; G. Santhosh; Chandrasekaran, M.; Noel, M. The Effect of Structure of Oil Phase, Surfactant and Co-Surfactant on the Physicochemical and Electrochemical Properties of Bicontinuous Microemulsion. 2007, 314 (2), 712–717. https://doi.org/10.1016/j.jcis.2007.05.0 80.
[64] Shafiq, S.; Shakeel, F.; Talegaonkar, S.; Ahmad, F. J.; Khar, R. K.; Ali, M. Development and Bioavailability Assessment of Ramipril Nanoemulsion Formulation. European Journal of Pharmaceutics and Biopharmaceutics 2007, 66 (2), 227–243. https://doi.org/10.1016/j.ejpb.2006.10.0 14.
[65] 65.-Ofokansi, K. C.; Kenechukwu, F. C.; Charles, L.; Attama, A. A. Topical Delivery of Miconazole- Loaded Microemulsion: Formulation Design and Evaluation. Journal of Pharmaceutical and Allied Sciences 2012, 9 (1), 1458–1471. https://doi.org/10.4314/jophas.v9i1.
[66] Patel, S.; Jain, P.; Parkhe, G. Formulation and Evaluation of Acyclovir Loaded Novel Nano-Emulsion Gel for Topical Treatment of Herpes Simplex Viral Infections. J. Drug Deliv. Ther. 2018, 8 (5- s), 265–270. https://doi.org/10.22270/jddt.v8i5- s.1968.
[67] Al Ayoub, Yuosef.; Gopalan, R. C.; Najafzadeh, M.; Mohammad, M. A.; Anderson, D.; Paradkar, A.; Assi, K. H. Development and Evaluation of Nanoemulsion and Microsuspension Formulations of Curcuminoids for Lung Delivery with a Novel Approach to Understanding the Aerosol Performance of Nanoparticles. International Journal of Pharmaceutics 2019, 557, 254–263. https://doi.org/10.1016/j.ijpharm.2018. 12.042
[68] Nissim Garti; Marganit Avrahami; Aserin, A. Improved Solubilization of Celecoxib in U-Type Nonionic Microemulsions and Their Structural Transitions with Progressive Aqueous Dilution. 2006, 299 (1), 352–365. https://doi.org/10.1016/j.jcis.2006.01.0 60.
[69] Hong, J.-Y.; Kim, J.-K.; Song, Y.-K.; Park, J.- S.; Kim, C.-K. A New Self-Emulsifying Formulation of Itraconazole with Improved Dissolution and Oral Absorption. Journal of Controlled Release 2006, 110 (2), 332–338. https://doi.org/10.1016/j.jconrel.2005.1 0.002.
[70] Surinder Kumar Mehta; Kawaljit; Bala, K. Phase Behavior, Structural Effects, and Volumetric and Transport Properties in Nonaqueous Microemulsions. 1999, 59 (4), 4317–4325. https://doi.org/10.1103/physreve.59.43 17.
[71] Salimi, A.; Moghimipour, E.; Leis, F. Preparation and Evaluation of Tretinoin Microemulsion Based on Pseudo-Ternary Phase Diagram. Advanced Pharmaceutical Bulletin 2012 (2), 141– 147. https://doi.org/10.5681/apb.2012.022.
[72] Behzad Sharif Makhmalzadeh; Torabi, S.; Armita Azarpanah. Optimization of Ibuprofen Delivery through Rat Skin from Traditional and Novel Nanoemulsion Formulations. Iran J Pharm Res. 2012 Winter; 11(1): 47–58 2012.
[73] Kawakami, K.; Yoshikawa, T.; Hayashi, T.; Nishihara, Y.; Masuda, K. Microemulsion Formulation for Enhanced Absorption of Poorly Soluble Drugs. Journal of Controlled Release 2002, 81 (1-2), 75–82. https://doi.org/10.1016/s0168- 3659(02)00050-0.
[74] Hu, L.; Yang, J.; Liu, W.; Li, L. Preparation and Evaluation of Ibuprofen-Loaded Microemulsion for Improvement of Oral Bioavailability. Drug Delivery 2010, 18 (1), 90–95. https://doi.org/10.3109/10717544.201 0.522613.
[75] Tem- Shen, H.; Zhong, M. Preparation and Evaluation of Self-Microemulsifying Drug Delivery Systems (SMEDDS) Containing Atorvastatin. The Journal of Pharmacy and Pharmacology 2006, 58 (9), 1183– 1191. https://doi.org/10.1211/jpp.58.9.0004.
[76] Moulik, S. P.; Paul, B. K. Structure, Dynamics and Transport Properties of Microemulsions. Advances in Colloid and Interface Science 1998, 78 (2), 99–195. https://doi.org/10.1016/s0001- 8686(98)00063-3.
[77] Patel, M.; Patel, N.; Patel, R. Formulation and Evaluation of Self-Microemulsifying Drug Delivery System of Lovastatin”. Asian J. Pharm. Sci. 2010, 5 (6), 266–275.
[78] Brime, B.; Moreno, M. A.; Frutos, G.; Ballesteros, Ma. Paloma.; Frutos, P. Amphotericin B in Oil– Water LecithinBased Microemulsions: Formulation and Toxicity Evaluation. Journal of Pharmaceutical Sciences 2002, 91 (4), 1178–1185. https://doi.org/10.1002/jps.10065.
[79] Pillai, A. B.; Nair, J. V.; Gupta, N. K.; Gupta, S. Microemulsion-Loaded Hydrogel Formulation of Butenafine Hydrochloride for Improved Topical Delivery. Archives of Dermatological Research 2015, 307 (7), 625–633. https://doi.org/10.1007/s00403-015- 1573-z.
[80] Yadav, V.; Jadhav, P.; Kanase, K.; Bodhe, A.; Dombe, S. Preparation And Evaluation Of Microemulsion Containing Antihypertensive Drug. International Journal of Applied Pharmaceutics 2018, 10 (5), 138. https://doi.org/10.22159/ijap.2018v10i 5.27415.
[81] Patel, M. R.; Patel, R. B.; Parikh, J. R.; Solanki, A. B.; Patel, B. G. Effect of Formulation Components on the in Vitro Permeation of Microemulsion Drug Delivery System of Fluconazole. AAPS PharmSciTech 2009, 10 (3). https://doi.org/10.1208/s12249-009- 9286-2.
[82] Salimi, A.; Moghimipour, E.; Leis, F. Preparation and Evaluation of Tretinoin Microemulsion Based on Pseudo-Ternary Phase Diagram. Advanced Pharmaceutical Bulletin 2012 (2), 141– 147. https://doi.org/10.5681/apb.2012.022.
[83] Jumaa, M.; Müller, B. W. The Effect of Oil Components and Homogenization Conditions on the Physicochemical Properties and Stability of Parenteral Fat Emulsions. International Journal of Pharmaceutics 1998, 163 (1), 81–89. https://doi.org/10.1016/S0378- 5173(97)00369-4.
[84] A. Haβe; Keipert S. Development and Characterization of Microemulsions for Ocular Application. European Journal of Pharmaceutics and Biopharmaceutics 1997, 43 (2), 179–183. https://doi.org/10.1016/s0939- 6411(96)00036-7.
[85] Surinder Kumar Mehta; Kawaljit; Bala, K. Phase Behavior, Structural Effects, and Volumetric and Transport Properties in Nonaqueous Microemulsions. 1999, 59 (4), 4317–4325. https://doi.org/10.1103/physreve.59.43 17.
[86] Gautam, N.; Kesavan, K. Development of Microemulsions for Ocular Delivery. Therapeutic Delivery 2017, 8 (5), 313– 330. https://doi.org/10.4155/tde-2016- 0076.
[87] Rhee, Y.-S.; Choi, J.-G.; Park, E.-S.; Chi, S.-C. Transdermal Delivery of Ketoprofen Using Microemulsions. International Journal of Pharmaceutics 2001, 228 (1- 2), 161–170. https://doi.org/10.1016/s0378- 5173(01)00827-4.
[88] Park, K.-M.; Kim, C.-K. Preparation and Evaluation of Flurbiprofen-Loaded Microemulsion for Parenteral Delivery. International Journal of Pharmaceutics 1999, 181 (2), 173–179. https://doi.org/10.1016/s0378- 5173(99)00029-0.
[89] Andrade, S. M.; Costa, B. Fluorescence Quenching of Acridine Orange in Microemulsions Induced by the NonSteroidal Anti-Inflammatory Drug Piroxicam. 2003, 2 (5), 605–610. https://doi.org/10.1039/b300097d.
[90] .Peltola, S.; Saarinen-Savolainen, P.; Juha Kiesvaara; T.M Suhonen; Arto Urtti. Microemulsions for Topical Delivery of Estradiol. 2003, 254 (2), 99–107. https://doi.org/10.1016/s0378- 5173(02)00632-4.
[91] . Li, C.-C.; Abrahamson, M. J.; Kapoor, Y.; Chauhan, A. Timolol Transport from Microemulsions Trapped in HEMA Gels. Journal of Colloid and Interface Science 2007, 315 (1), 297–306. https://doi.org/10.1016/j.jcis.2007.06.0 54.
[92] Biruss, B.; Valenta, C. The Advantage of Polymer Addition to a Non-Ionic Oil in Water Microemulsion for the Dermal Delivery of Progesterone. 2008, 349 (1-2), 269–273. https://doi.org/10.1016/j.ijpharm.2007. 08.003
[93] Kweon, J.-H.; Chi, S.-C.; Park, E.-S. Transdermal Delivery of Diclofenac Using Microemulsions. Archives of Pharmacal Research 2004, 27 (3), 351–356. https://doi.org/10.1007/bf02980072.
[94] Vyas, T. K.; Babbar, A. K.; Sharma, R. K.; Singh, S.; Misra, A. Preliminary BrainTargeting Studies on Intranasal Mucoadhesive Microemulsions of Sumatriptan. AAPS PharmSciTech 2006, 7 (1), E49–E57. https://doi.org/10.1208/pt070108.
[95] Sanjula Baboota; A Al-Azaki; Kohli, K.; Ali, J.; Dixit, N. S.; Shakeel, F. Development and Evaluation of a Microemulsion Formulation for Transdermal Delivery of Terbinafine. 2007, 61 (4), 276–285.
[96] Praça, F. G.; Viegas, J. S. R.; Peh, H. Y.; Garbin, T. N.; Medina, W. S. G.; Bentley, M. V. L. B. Microemulsion Co-Delivering Vitamin a and Vitamin E as a New Platform for Topical Treatment of AcuteSkin Inflammation. Materials Science and Engineering: C 2020, 110, 110639.https://doi.org/10.1016/j.msec. 2020.110639.
[97] Date, A. A.; Nagarsenker, M. S. Parenteral Microemulsions: An Overview. International Journal of Pharmaceutics 2008, 355 (1-2), 19–30. https://doi.org/10.1016/j.ijpharm.2008. 01.004.
[98] Vyas, T. K.; Babbar, A. K.; Sharma, R. K.; Singh, S.; Misra, A. Intranasal Mucoadhesive Microemulsions of Clonazepam: Preliminary Studies on Brain Targeting. Journal of Pharmaceutical Sciences 2006, 95 (3), 570–580. https://doi.org/10.1002/jps.20480.
[99] Badawi, A. A.; Sakran, W. S.; Ramadan, M. A.; El-Mancy, S. M. S. Improvement of the Microbiological Activity of Topical Ketoconazole Using Microemulsion Systems. Journal of Drug Delivery Science and Technology 2012, 22 (6), 473–478. https://doi.org/10.1016/s1773- 2247(12)50083-3.
[100] Ofokansi, K. C.; Kenechukwu, F. C.; Charles, L.; Attama, A. A. Topical Delivery of Miconazole- Loaded Microemulsion: Formulation Design and Evaluation. Journal of Pharmaceutical and Allied Sciences 2012, 9 (1), 1458-1471. https://doi.org/10.4314/jophas.v9i1.