Volume 16

October-December 2024

Polymeric Micelles for Targeted Drug Delivery: Recent Advances and Challenges

Leman P Gavit, Gangotri S Yadav, Ashish S Jain, Hrishikesh R More, Pratiksha V Pukale, Pratidnya S Patil

Abstract: 
To improve drug delivery systems and to enhance the solubility and Minimizing side effects.to improve stability, and bioavailability of poorly water-soluble drugs. Polymeric micelles (PM) are revolutionising the field of medicine by improving the delivery of poorly soluble drugs, increasing their effectiveness, and lowering their side effects. This results in better gene therapies, targeted drug delivery, and more effective cancer treatments. To put it simply, PM make treatments more accurate and efficient, revolutionising patient care and personalised medicine. Polymeric micelles are paving the way for a future in which medications are safer, more effective. Polymeric micelles typically have a core-shell structure, with a hydrophobic core and a hydrophilic shell. This configuration allows them to encapsulate hydrophobic drugs within the core, enhancing their solubility and stability. Size: They usually range from 10 to 100 nm in size, which is ideal for drug delivery applications as it allows them to circulate in the bloodstream for extended periods and accumulate in target tissues through the enhanced permeability and retention (EPR) effect. Methods for development of micelles: Direct Dissolution, Precipitation/evaporation, Oil/water emulsion, Thin Film Hydration.

Keywords: Polymeric micelles, Colloid, Amphiphilic, Supramolecule, Nanocarriers.

References:
[1] Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharmaceutica Sinica B [Internet]. 2015 Sep 1 [cited 2020 Feb 25];5(5):442–53. 

[2] Bose A, Roy Burman D, Sikdar B, Patra P. Nanomicelles: Types, properties and applications in drug delivery. IET Nanobiotechnology. 2021 Feb;15(1):19–27.

[3] Nikalje AP. Nanotechnology and its Applications in Medicine. Medicinal Chemistry [Internet]. 2015;5(2). 

[4] Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharmaceutica Sinica B [Internet]. 2015 Sep 1;5(5):442–53

[5] Miyata K, Christie RJ, Kataoka K. Polymeric micelles for nano-scale drug delivery. Reactive and Functional Polymers [Internet]. 2011 Mar;71(3):227–34.

[6] Deshmukh AS, Chauhan PN, Noolvi MN, Chaturvedi K, Ganguly K, Shukla SS, et al. Polymeric micelles: Basic research to clinical practice. International Journal of Pharmaceutics [Internet]. 2017 Oct 30 [cited 2021 Apr 7];532(1):249–68. 

[7] Yokoyama M. Polymeric micelles as drug carriers: their lights and shadows. Journal of Drug Targeting. 2014 Jul 11;22(7):576–83.

[8] Jones MC, Leroux JC. Polymeric micelles – a new generation of colloidal drug carriers. European Journal of Pharmaceutics and Biopharmaceutics [Internet]. 1999 Sep 1;48(2):101–11.

[9] Bose A, Roy Burman D, Sikdar B, Patra P. Nanomicelles: Types, properties and applications in drug delivery. IET Nanobiotechnology. 2021 Feb;15(1):19–27.

[10] Sammalkorpi M, Karttunen M, Haataja M. Ionic Surfactant Aggregates in Saline Solutions: Sodium Dodecyl Sulfate (SDS) in the Presence of Excess Sodium Chloride (NaCl) or Calcium Chloride (CaCl2). The Journal of Physical Chemistry B. 2009 Apr 30;113(17):5863–70.

[11] Yadav KS, Mishra DK, Deshpande A, Pethe AM. Levels of Drug Targeting. Basic Fundamentals of Drug Delivery. 2019;269–305.

[12] Croy S, Kwon G. Polymeric Micelles for Drug Delivery. Current Pharmaceutical Design. 2006 Dec 1;12(36):4669–84.

[13] Yokoyama M. Polymeric micelles as drug carriers: their lights and shadows. Journal of Drug Targeting. 2014 Jul 11;22(7):576–83.

[14] Ahmad Z, Shah A, Siddiq M, Kraatz HB. Polymeric micelles as drug delivery vehicles. RSC Adv. 2014;4(33):17028–38.

[15] Ghezzi M. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. Journal of Controlled Release [Internet]. 2021 Apr 10;332:312–36.

[16] Yokoyama M, Okano T, Sakurai Y, H Ekimoto, C Shibazaki, Kataoka K. Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood. PubMed. 1991 Jun 15;51(12):3229–36.

[17] Kwon GS, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Biodistribution of micelle-forming polymer-drug conjugates. Pharmaceutical Research. 1993 Jan 1;10(7):970–4.

[18] Ulbrich K, Čestmı́rKoňák, Zdeněk Tuzar, Jindřich Kopeček. Solution properties of drug carriers based on poly[N‐(2‐hydroxypropyl) methacrylamide] containing biodegradable bonds. Die makromolekulareChemie. 1987 Jun 1;188(6):1261–72.

[19] Weissig V, Whiteman KR, Torchilin VP. Pharmaceutical Research. 1998;15(10):1552–6.

[20] Mahmud A, Xiong XB, Aliabadi HM, Lavasanifar A. Polymeric micelles for drug targeting. Journal of Drug Targeting. 2007 Jan;15(9):553–84.

[21] Qiao M, Chen D, Ma X, Liu Y. Injectable biodegradable temperature-responsive PLGA–PEG–PLGA copolymers: Synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. International Journal of Pharmaceutics. 2005 Apr;294(1-2):103–12.

[22] Qiao M, Chen D, Ma X, Liu Y. Injectable biodegradable temperature-responsive PLGA–PEG–PLGA copolymers: Synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. International Journal of Pharmaceutics. 2005 Apr;294(1-2):103–12.

[23] Ghasemi R, Abdollahi M, Emamgholi Zadeh E, Khodabakhshi K, Badeli A, Bagheri H, et al. mPEG-PLA and PLA-PEG-PLA nanoparticles as new carriers for delivery of recombinant human Growth Hormone (rhGH). Scientific Reports. 2018 Jun 29;8(1).

[24] Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm FR, et al. Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. Chemical Reviews. 2015 Dec 29;116(4):2170–243.

[25] Wilms D, Stiriba SE, Frey H. Hyperbranched Polyglycerols: From the Controlled Synthesis of Biocompatible Polyether Polyols to Multipurpose Applications. Accounts of Chemical Research. 2009 Sep 28;43(1):129–41.

[26] ThavasyappanThambi, Hong Yeol Yoon, Kim K, Ick Chan Kwon, Chang Kyoo Yoo, Jae Hyung Park. BioreducibleDiblockcopolymerss Based on Poly(Ethylene Glycol) and Poly(γ-Benzyl l-Glutamate) for Intracellular Delivery of Camptothecin. Bioconjugate chemistry. 2011 Sep 22;22(10):1924–31.

[27] Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews. 2016 Feb 8;116(4):2602–63.

[28] González-Henríquez CM, Sarabia-Vallejos MA, Rodríguez-Hernández J. Strategies to Fabricate Polypeptide-Based Structures via Ring-Opening Polymerization of N-Carboxyanhydrides. Polymers. 2017 Oct 25;9(12):551.

[29] Haider MS, Lübtow MM, Endres S, Forster S, Flegler VJ, Böttcher B, et al. Think Beyond the Core: Impact of the Aquaphilic Corona on Drug Solubilization Using Polymer Micelles. ACS applied materials & interfaces [Internet]. 2020 Jun 3;12(22):24531–43. 

[30] Lübtow MM, Hahn L, Malik Salman Haider, Luxenhofer R. Drug Specificity, Synergy and Antagonism in Ultrahigh Capacity Poly(2-oxazoline)/Poly(2-oxazine) based Formulations. Journal of the American Chemical Society. 2017 Aug 8;139(32):10980–3.

[31] Lübtow MM, Haider MS, Kirsch M, Klisch S, Luxenhofer R. Like Dissolves Like? A Comprehensive Evaluation of Partial Solubility Parameters to Predict Polymer–Drug Compatibility in Ultrahigh Drug-Loaded Polymer Micelles. Biomacromolecules. 2019 Jun 24;20(8):3041–56.

[32] He Z, Wan X, Schulz A, Bludau H, Dobrovolskaia MA, Stern ST, et al. A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity. Biomaterials. 2016 Sep;101:296–309.

[33] Morgese G, Benetti EM. Polyoxazoline biointerfaces by surface grafting. 2017 Mar 1;88:470–85.

[34] Luxenhofer R, Schulz A, Roques C, Li S, Bronich TK, Batrakova EV, et al. Doubly amphiphilic poly(2-oxazoline)s as high-capacity delivery systems for Aquaphobic drugs. Biomaterials. 2010 Jun 1;31(18):4972–9.

[35] Li F, Li S, El Ghzaoui A, Nouailhas H, Zhuo R. Synthesis and Gelation Properties of PEG−PLA−PEG TriDiblockcopolymerss Obtained by Coupling Monohydroxylated PEG−PLA with Adipoyl Chloride. Langmuir. 2007 Jan 23;23(5):2778–83.

[36] Bogdanov B, Vidts A, Van Den Buicke A, Verbeeck R, Schacht E. Synthesis and thermal properties of poly(ethylene glycol)-poly(ϵ-caprolactone) copolymers. Polymer. 1998 Jan;39(8-9):1631–6.

[37] Cui S, Pan X, Gebru H, Wang X, Liu J, Liu J, et al. Amphiphilic star-shaped poly(sarcosine)-block-poly(ε-caprolactone) diDiblockcopolymerss: one-pot synthesis, characterization, and solution properties. Journal of Materials Chemistry B. 2017;5(4):679–90.

[38] Birke A, Ling J, Barz M. Polysarcosine-containing copolymers: Synthesis, characterization, self-assembly, and applications. Progress in Polymer Science. 2018 Jun;81:163–208.

[39] Rutuja Hemant Vinchurkar, Ashwin Bhanudas Kuchekar. Polymeric Micelles: A Novel Approach towards Nano-Drug Delivery System. 2021 Dec 31;

[40] Almeida M, Magalhães M, Veiga F, Figueiras A. Poloxamers, poloxamines and polymeric micelles: Definition, structure and therapeutic applications in cancer. Journal of Polymer Research. 2017 Dec 30;25(1).

[41] Chavoshy F, Makhmalzade B. Polymeric micelles as cutaneous drug delivery system in normal skin and dermatological disorders. Journal of Advanced Pharmaceutical Technology & Research. 2018;9(1):2.

[42] Nimtrakul P, Williams DB, Tiyaboonchai W, Prestidge CA. Copolymeric Micelles Overcome the Oral Delivery Challenges of Amphotericin B. Pharmaceuticals. 2020 Jun 11;13(6):121.

[43] Badr-Eldin SM, Aldawsari HM, Fahmy UA, Ahmed OAA, Alhakamy NA, Elfaky MA, et al. Optimized D-α-tocopherol polyethylene glycol succinate/phospholipid self-assembled mixed micelles: A promising lipid-based nanoplatform for augmenting the antifungal activity of fluconazole. Acta Pharmaceutica. 2022 Oct 18;72(4):547–60.

[44] Chen H, Khemtong C, Yang X, Chang X, Gao J. Nanonization strategies for poorly water-soluble drugs. Drug Discovery Today. 2011 Apr;16(7-8):354–60.

[45] Quartier J, Lapteva M, Younes Boulaguiem, Guerrier S, Kalia YN. Polymeric micelle formulations for the cutaneous delivery of sirolimus: A new approach for the treatment of facial angiofibromas in tuberous sclerosis complex. International journal of pharmaceutics. 2021 Jul 1;604:120736–6.

[46] Huang C, Thompson TE. [45] Preparation of homogeneous, single-walled phosphatidylcholine vesicles. Methods in enzymology on CD-ROM/Methods in enzymology. 1974 Jan 1;485–9.

[47] Bose A, Roy Burman D, Sikdar B, Patra P. Nanomicelles: Types, properties and applications in drug delivery. IET Nanobiotechnology. 2021 Feb;15(1):19–27.

[48] Rutuja Hemant Vinchurkar, Ashwin Bhanudas Kuchekar. Polymeric Micelles: A Novel Approach towards Nano-Drug Delivery System. 2021 Dec 31;

[49] Badr-Eldin SM, Aldawsari HM, Fahmy UA, Ahmed OAA, Alhakamy NA, Elfaky MA, et al. Optimized D-α-tocopherol polyethylene glycol succinate/phospholipid self-assembled mixed micelles: A promising lipid-based nanoplatform for augmenting the antifungal activity of fluconazole. Acta Pharmaceutica. 2022 Oct 18;72(4):547–60.

[50] Khurana RK, Gaspar BL, Welsby G, Katare OP, Singh KK, Singh B. Improving the biopharmaceutical attributes of mangiferin using vitamin E-TPGS co-loaded self-assembled phosholipidic nano-mixed micellar systems. Drug Delivery and Translational Research. 2018 Jun 1;8(3):617–32. 

[51] Quartier J, Lapteva M, Younes Boulaguiem, Guerrier S, Kalia YN. Polymeric micelle formulations for the cutaneous delivery of sirolimus: A new approach for the treatment of facial angiofibromas in tuberous sclerosis complex. International journal of pharmaceutics. 2021 Jul 1;604:120736–6.

[52] Ghezzi M. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. Journal of Controlled Release. 2021 Apr 10;332:312–36. 

[53] Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kataoka K. Preparation and Biological Characterization of Polymeric Micelle Drug Carriers with Intracellular pH-Triggered Drug Release Property: Tumor Permeability, Controlled Subcellular Drug Distribution, and Enhanced in Vivo Antitumor Efficacy. Bioconjugate Chemistry. 2005 Jan;16(1):122–30.

[54] Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology. 2009 Jun;86(3):215–23.

[55] Wong C, Stylianopoulos T, Cui J, Martin J, Chauhan VP, Jiang W, et al. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proceedings of the National Academy of Sciences. 2011 Jan 18;108(6):2426–31.

[56] Aswani Dutt Vadlapudi. Nanomicelles: an emerging platform for drug delivery to the eye “…this technology (nanomicelles) can be highly patient compliant and may enable non-invasive drug delivery to back-of-the-eye disorders such as age-related macular degeneration, diabetic retinopathy, diabetic macular edema and posterior uveitis.” 2013 Jan 1;

[57] Patel A. Ocular Drug Delivery systems: an Overview. World Journal of Pharmacology. 2013;2(2):47.

[58] Zhan C, Li B, Hu L, Wei X, Feng L, Fu W, et al. Micelle-Based Brain-Targeted Drug Delivery Enabled by a Nicotine Acetylcholine Receptor Ligand. Angewandte Chemie. 2011 May 3;123(24):5596–9.

[59] Wang T, Petrenko VA, Torchilin VP. Paclitaxel-Loaded Polymeric Micelles Modified with MCF-7 Cell-Specific Phage Protein: Enhanced Binding to Target Cancer Cells and Increased Cytotoxicity. Molecular Pharmaceutics. 2010 Jun 10;7(4):1007–14.

[60] Garg C, Priyam A, Kumar P, Sharma AK, Gupta A. In vitro assessment of core-shell micellar nanostructures of amphiphilic cationic polymer-peptide conjugates as efficient gene and drug carriers. Journal of Pharmaceutical Sciences. 2020 Sep 1;109(9):2847-53.

[61] Talelli M, Iman M, Varkouhi AK, Rijcken CJF, Schiffelers RM, Etrych T, et al. Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin. Biomaterials. 2010 Oct;31(30):7797–804.

[62] Thurmond KB, Kowalewski T, Wooley KL. Water-Soluble Knedel-like Structures: The Preparation of Shell-Cross-Linked Small Particles. Journal of the American Chemical Society. 1996 Jan;118(30):7239–40.

[63] Attwood D, Elworthy PH, Kayne SB. Membrane osmometry of aqueous micellar solutions of pure nonionic and ionic surfactants. The Journal of Physical Chemistry. 1970 Sep;74(19):3529–34.

[64] Li Y, Lokitz BS, McCormick CL. RAFT Synthesis of a Thermally Responsive ABC TriDiblock copolymers Incorporating N-Acryloxysuccinimide for Facile in Situ Formation of Shell Cross-Linked Micelles in Aqueous Media†. Macromolecules. 2006 Jan;39(1):81–9.

[65] Wang Y, Liu D, Zheng Q, Zhao Q, Zhang H, Ma Y, et al. Disulfide Bond Bridge Insertion Turns Aquaphobic Anticancer Prodrugs into Self-Assembled Nanomedicines. Nano Letters. 2014 Sep 7;14(10):5577–83.

[66] Song S, Chen F, Qi H, Li F, Xin T, Xu J, et al. Multifunctional Tumor-Targeting Nanocarriers Based on Hyaluronic Acid-Mediated and pH-Sensitive Properties for Efficient Delivery of Docetaxel. Pharmaceutical Research. 2013 Oct 24;31(4):1032–45.