The Effectiveness of Nanoparticle-Based Drug Delivery Systems in Enhancing the Permeation of Anticancer Drugs Specifically for Breast Cancer Treatment
Omkar Tambvekar, Gangotri Yadav, Mayuri Mhatre, Ashish Jain
Abstract:
Breast cancer is still a major worldwide health concern, so new treatment approaches must be continuously investigated. Drug delivery methods based on nanoparticles have shown great promise in improving the effectiveness of anticancer medications by getting beyond biological obstacles such restricted penetration through tumour tissues. The purpose of this abstract is to give a brief summary of how well nanoparticle-based drug delivery systems work to improve the penetration of anticancer medications by using permeation enhancer, particularly those used to treat breast cancer.The field of epidemiological study has made substantial progress in our comprehension of the genetic and environmental factors that influence the risk of breast cancer. Breast cancer is the second most common cause of cancer-related fatalities in the United States, after lung cancer, and it is a major source of misery and early death among women worldwide. Epidemiological studies have established a number of risk factors for breast cancer, including race, ethnicity, family history of the disease, genetic predispositions, and modifiable exposures such as alcohol use, sedentary lifestyle, hormone use, and specific reproductive factors in women.This review examines the existing review on utilizing nanoparticle-based systems for delivering drugs in cancer treatment, and it evaluates their effectiveness. These nanoparticles hold promise in improving the delivery of anticancer drugs, decreasing toxicity in the body, and improving treatment outcomes. Numerous studies, both in preclinical and clinical settings, have demonstrated encouraging results. Nevertheless, there are hurdles like restricted drug loading, stability concerns, and potential adverse effects that must be overcome to facilitate their practical application in clinical settings.
Keywords: Breast cancer, Nanoparticle, Toxicity, Drug delivery Treatment.
References:
[1] Dang, Y.; Guan, J. Nanoparticle-Based Drug Delivery Systems for Cancer Therapy. Smart Materials in Medicine 2020, 1, 10–19.
[2] Elumalai, K.; Srinivasan, S.; Shanmugam, A. Review of the Efficacy of NanoparticleBased Drug Delivery Systems for Cancer Treatment. Biomedical Technology 2024, 5, 109–122..
[3] Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Joni, I. M.; Muchtaridi, M. Chitosan-Based Nanoparticles of Targeted Drug Delivery System in Breast Cancer Treatment. Polymers 2021, 13 (11), 1717.
[4] Mirza, Z.; Karim, S. Nanoparticles-Based Drug Delivery and Gene Therapy for Breast Cancer: Recent Advancements and Future Challenges. Seminars in Cancer Biology 2019.
[5] Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a Cancer Journal for Clinicians 2018, 68 (6), 394– 424.
[6] Liyanage, P. Y.; Hettiarachchi, S. D.; Zhou, Y.; Ouhtit, A.; Seven, E. S.; Oztan, C. Y.; Celik, E.; Leblanc, R. M. Nanoparticle-Mediated Targeted Drug Delivery for Breast Cancer Treatment. Biochimica et Biophysica Acta (BBA) – Reviews on Cancer 2019, 1871 (2), 419–433.
[7] Jahan, S.; Karim, Md. E.; Chowdhury, E. H. Nanoparticles Targeting Receptors on Breast Cancer for Efficient Delivery of Chemotherapeutics. Biomedicines 2021, 9 ( 2), 114.
[8] Grobmyer, S. R.; Zhou, G.; Gutwein, L. G.; Iwakuma, N.; Sharma, P.; Hochwald, S. N. Nanoparticle Delivery for Metastatic Breast Cancer. Nanomedicine: Nanotechnology, Biology and Medicine 2012, 8, S21–S30.
[9] van der Meel, R.; Sulheim, E.; Shi, Y.; Kiessling, F.; Mulder, W. J. M.; Lammers, T. Smart Cancer Nanomedicine. Nature Nanotechnology 2019, 14 (11), 1007–1017.
[10] Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an Emerging Platform for Cancer Therapy. NatureNanotechnology 2007, 2 (1 2), 751–760.
[11] Kumari, P.; Ghosh, B.; Biswas, S. Nanocarriers for Cancer-Targeted Drug Delivery. Journal of Drug Targeting 2015, 24 (3), 179–191.
[12] Giordano, K. F.; Aminah Jatoi. The Cancer Anorexia/Weight Loss Syndrome: Therapeutic Challenges. Current oncology reports 2005, 7 (4), 271–276.
[13] Torchilin, V. P. Drug Targeting. European Journal of Pharmaceutical Sciences 2000, 11, S81–S91.
[14] Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Advanced Drug Delivery Reviews 2001, 46 (1-3), 3–26.
[15] Langer R. Drug delivery and targeting. Nature. 1998 Apr 30;392(6679 Suppl):5- 10. PMID: 9579855.
[16] Brannon-Peppas, L.; Blanchette, J. O. Nanoparticle and Targeted Systems for Cancer Therapy. Advanced Drug DeliveryReviews 2004, 56 (11), 1649– 1659.
[17] Kim, J.-H.; Kim, Y.-S.; Kim, S.; Park, J. H.; Kim, K.; Choi, K.; Chung, H.; Jeong, S. Y.; Park, R.-W.; Kim, I.-S.; Kwon, I. C. Hydrophobically Modified Glycol Chitosan Nanoparticles as Carriers for Paclitaxel. Journal of Controlled Release 2006, 111 (1-2), 228–234.
[18] Torchilin, V. P. PEG-Based Micelles as Carriers of Contrast Agents for Different Imaging Modalities. Advanced Drug Delivery Reviews 2002, 54 (2), 235–252.
[19] Park, J. H.; Lee, S.; Kim, J.-H.; Park, K.; Kim, K.; Kwon, I. C. Polymeric Nanomedicine for Cancer Therapy. Progress in Polymer Science 2008, 33 (1), 113–137.
[20] Challa. Nanomaterials for Medical Applications. Kirk-Othmer Encyclopedia of Chemical Technology 2007.
[21] Cho, K.; Wang, X.; Nie, S.; Chen, Z.; Shin, D. M. Therapeutic Nanoparticles for Drug Delivery in Cancer. Clinical Cancer Research 2008, 14 (5), 1310–1316.
[22] Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res. 1987 Jun 15;47(12):3039-51. PMID: 3555767.
[23] Ozawa, M. G.; Zurita, A. J.; Dias-Neto, E.; Nunes, D. N.; Sidman, R. L.; Gelovani, J. G.; Wadih Arap; Pasqualini, R. Beyond Receptor Expression Levels: The Relevance of Target Accessibility in Ligand-Directed Pharmacodelivery Systems. Trends in cardiovascular medicine 2008, 18 (4), 126– 133.
[24] Yan Lee, P.; K.Y. Wong, K. Nanomedicine: A New Frontier in Cancer Therapeutics. Current Drug Delivery 2011, 8 (3), 245–253.
[25] Pridgen, E. M.; Langer, R.; Farokhzad, O. C. Biodegradable, Polymeric Nanoparticle Delivery Systems for Cancer Therapy. Nanomedicine 2007, 2 (5), 669– 680.
[26] Curtis, C.; Shah, S. P.; Chin, S.-F.; Turashvili, G.; Rueda, O. M.; Dunning, M. J.; Speed, D.; Lynch, A. G.; Samarajiwa, S.; Yuan, Y.; Gräf, S.; Ha, G.; Haffari, G.; Bashashati, A.; Russell, R.; McKinney, S.; Langerød, A.; Green, A.; Provenzano, E.; Wishart, G. The Genomic and Transcriptomic Architecture of 2,000 Breast Tumours Reveals Novel Subgroups. Nature 2012, 486 (7403), 346– 352.
[27] Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. In Vivo Cancer Targeting and Imaging with Semiconductor Quantum Dots. Nature Biotechnology 2004, 22 (8),969–976.
[28] Maeda, H.; Fang, J.; Inutsuka, T.; Kitamoto, Y. Vascular Permeability Enhancement in Solid Tumor: Various Factors, Mechanisms Involved and Its Implications. International Immunopharmacology 2003, 3 (3), 319– 328.
[29] Kim, K. Y. Nanotechnology Platforms and Physiological Challenges for Cancer Therapeutics. Nanomedicine: Nanotechnology, Biology and Medicine 2007, 3 (2),103-110.
[30] Kim, K. Y. Nanotechnology Platforms and Physiological Challenges for Cancer Therapeutics. Nanomedicine: Nanotechnology, Biology and Medicine 2007, 3 (2), 103–110.
[31] Chauhan, V. P.; Stylianopoulos, T.; Boucher, Y.; Jain, R. K. Delivery of Molecular and Nanoscale Medicine to Tumors: Transport Barriers and Strategies. Annual Review of Chemical and Biomolecular Engineering 2011, 2 (1), 281–298.
[32] Chari, R. V. J. Targeted Delivery of Chemotherapeutics: Tumor-Activated Prodrug Therapy. Advanced Drug Delivery Reviews 1998, 31 (1-2), 89–104.
[33] Tanaka, T.; Decuzzi, P.; Cristofanilli, M.; Sakamoto, J. H.; Tasciotti, E.; Robertson, F. M.; Ferrari,M.Nanotechnology for Breast Cancer Therapy. Biomedical Microdevices 2008, 11 (1), 49–63.
[34] Tanaka, T.; Decuzzi, P.; Cristofanilli, M.; Sakamoto, J. H.; Tasciotti, E.; Robertson,F. M.; Ferrari, M. Nanotechnology for Breast Cancer Therapy. Biomedical Microdevices 2008, 11 (1), 49–63.
[35] Bharali DJ, Khalil M, Gurbuz M, Simone TM, Mousa SA. Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int J Nanomedicine. 2009;4:1- 7. Epub 2009 Apr 1. PMID: 19421366; PMCID: PMC2720735.
[36] Service, R. F. Nanoparticle Trojan Horses Gallop from the Lab into the Clinic. Science 2010, 330 (6002),314–315.
[37] Wang, M.; Thanou, M. Targeting Nanoparticles to Cancer. PharmacologicalResearch 2010, 62 (2), 90–99.
[38] Kateb, B.; Chiu, K.; Black, K. L.; Yamamoto, V.; Khalsa, B.; Ljubimova, J. Y.; Ding, H.; Patil, R.; Portilla-Arias, J. A.; Modo, M.; Moore, D. F.; Farahani, K.; Okun, M. S.; Prakash, N.; Neman, J.; Ahdoot, D.; Grundfest, W.; Nikzad, S.; Heiss, J. D. Nanoplatforms for Constructing New Approaches to Cancer Treatment, Imaging, and Drug Delivery: What Should Be the Policy? NeuroImage 2011, 54, S106–S124.
[39] Davis, M. E.; Chen, Z.; Shin, D. M. Nanoparticle Therapeutics: An Emerging Treatment Modality for Cancer. Nature Reviews Drug Discovery 2008, 7 (9), 771– 782.
[40] Wang, X.; Yang, L.; Chen, Z.; Shin, D. M. Application of Nanotechnology in Cancer Therapy and Imaging. CA: A Cancer Journal for Clinicians 2008, 58 (2), 97–110.
[41] Yang, T.; Choi, M.-K.; Cui, F.-D.; Kim, J. S.; Chung, S.-J.; Shim, C.-K.; Kim, D.-D. Preparation and Evaluation of PaclitaxelLoaded PEGylated Immunoliposome. Journal of Controlled Release: Official Journal of the Controlled Release Society 2007, 120 (3), 169–177.
[42] Liu, P.; Chen, G.; Zhang, J. A Review of Liposomes as a Drug Delivery System:Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules 2022, 27 (4).
[43] Frechet, J. M. J. Dendrimers and Supramolecular Chemistry. Proceedings of the National Academy of Sciences 2002, 99 (8), 4782–4787.
[44] McCarthy, T. D.; Karellas, P.; Henderson, S. A.; Giannis, M.; O’Keefe, D. F.; Heery, G.; Paull, J. R. A.; Matthews, B. R.; Holan, G. Dendrimers as Drugs: Discovery and Preclinical and Clinical Development of Dendrimer-Based Microbicides for HIV and STI Prevention. Molecular Pharmaceutics 2005, 2 (4), 312–318.
[45] Pan, B.; Cui, D.; Sheng, Y.; Ozkan, C.; Gao, F.; He, R.; Li, Q.; Xu, P.; Huang, T. DendrimerModified Magnetic Nanoparticles Enhance Efficiency of Gene Delivery System. Cancer Research 2007, 67 (17), 8156–8163. [46] Loo, C.; Hirsch, L.; Lee, M.-H.; Chang, E.; West, J.; Halas, N.; Drezek, R. Gold Nanoshell Bioconjugates for Molecular Imaging in Living Cells. Optics Letters 2005, 30 (9), 1012.
[47] Rizia Bardhan; Lal, S.; Joshi, A.; Halas, N. J. TheranosticNanoshells: From Probe Design to Imaging and Treatment of Cancer. Accounts of Chemical Research 2011, 44 (10), 936–946.
[48] Loo, C.; Lin, A.; Hirsch, L.; Lee, M.-H.; Barton, J.; Halas, N.; West, J.; Drezek, R. Nanoshell-Enabled Photonics-Based Imaging and Therapy of Cancer. Technology in Cancer Research & Treatment 2004, 3 (1), 33–40.
[49] Wang, C.; Gao, X.; Su, X. In Vitro and in Vivo Imaging with Quantum Dots. Analytical and Bioanalytical Chemistry 2010, 397 (4), 1397–1415.
[50] Chan, W. C. W.; Maxwell, D. J.; Gao, X.; Bailey, R. E.; Han, M.; Nie, S. Luminescent Quantum Dots for Multiplexed Biological Detection and Imaging. Current Opinion in Biotechnology 2002, 13 (1), 40–46.
[51] Wang, C.; Gao, X.; Su, X. In Vitro and in Vivo Imaging with Quantum Dots. Analytical and Bioanalytical Chemistry 2010, 397 (4), 1397–1415.
[52] Ma, Q.; Lin, Z.-H.; Yang, N.; Li, Y.; Su, X.-G. A Novel Carboxymethyl Chitosan–Quantum Dot-Based Intracellular Probe for Zn2+ Ion Sensing in Prostate Cancer Cells. Acta biomaterialia 2014, 10 (2), 868–874.
[53] Carbon Nanotubes in Cancer Diagnosis and Therapy. Biochimica et Biophysica Acta (BBA) – Reviews on Cancer 2010, 1806 (1), 29–35.
[54] Shao, N.; Lu, S.; Wickstrom, E.; Balaji Panchapakesan. Integrated Molecular Targeting of IGF1R and HER2 Surface Receptors and Destruction of Breast Cancer Cells Using Single Wall Carbon Nanotubes. 2007, 18 (31), 315101– 315101.
[55] Gupta, A. K.; Gupta, M. Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications. Biomaterials 2005, 26 (18), 3995–4021.
[56] Yallapu, M. M.; Othman, S. F.; Curtis, E. T.; Gupta, B. K.; Jaggi, M.; Chauhan, S. C. MultiFunctional Magnetic Nanoparticles for Magnetic Resonance Imaging and Cancer Therapy. Biomaterials 2011, 32 (7), 1890– 1905.
[57] Lu, A.-H.; Salabas, E. L.; Schüth, F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. AngewandteChemie International Edition 2007, 46 (8), 1222– 1244.
[58] Vivek, R.; Thangam, R.; Nipunbabu, V.; Ponraj, T.; Kannan, S. Oxaliplatin-Chitosan Nanoparticles Induced Intrinsic Apoptotic Signaling Pathway: A “Smart” Drug Delivery System to Breast Cancer Cell Therapy. International Journal of Biological Macromolecules 2014, 65, 289–2
[59] Fan, L.; Wu, H.; Zhang, H.; Li, F.; Yang, T.; Gu, C.; Yang, Q. Novel Super PH-Sensitive Nanoparticles Responsive to Tumor Extracellular PH. Carbohydrate Polymers 2008, 73 (3), 390–400
[60] Dua, R.; Zhang, J.; Nhonthachit, P.; Penuel, E.; Petropoulos, C.; Parry, G. EGFR OverExpression and Activation in High HER2, ER Negative Breast Cancer Cell Line Induces Trastuzumab Resistance. Breast Cancer Research and Treatment 2009, 122 (3), 685–697.
[61] Liu, P.; Li, Z.; Zhu, M.; Sun, Y.; Li, Y.; Wang, H.; Duan, Y. Preparation of EGFR Monoclonal Antibody Conjugated Nanoparticles and Targeting to Hepatocellular Carcinoma. Journal of materials science. Materials in medicine 2009, 21 (2)
[62] Bodek, G.; Nafis Ahmed Rahman; Zaleska, M.; Rabah Soliymani; Hikka Lankinen; Hansel, W.; Ilpo Huhtaniemi; Ziecik, A. J. A Novel Approach of Targeted Ablation of Mammary Carcinoma Cells through Luteinizing Hormone Receptors Using Hecate-CGβ Conjugate. Breast cancer research and treatment 2003, 79 (1), 1–10.